

Proyección del consumo de energía eléctrica en la minería del cobre 2023-2034

DEPP 05/2024

Resumen Ejecutivo

El estudio proyecta el consumo eléctrico de la minería del cobre en el periodo 2023-2034 en base a: i) la cartera de proyectos y operaciones mineras vigentes, ii) la proyección de producción de los proyectos futuros de cobre iii) operación actual y la entrada en operación de plantas de desalación e impulsión de agua de mar. Asimismo, dada la incertidumbre asociada a la producción, las estimaciones de consumo eléctrico se construyen en base a tres escenarios: esperado, máximo y mínimo.

Se estima el consumo eléctrico crezca desde 26,0 TWh en 2023 hasta 34,2 TWh en 2034 lo que representa un incremento del 31,4% versus un 20,7% de aumento en la producción de cobre en el mismo periodo analizado. Este crecimiento se atribuye al alto consumo en concentración, proceso que por sí solo en el 2034 consumirá 20,2 TWh representando el 58,9% de la electricidad del sector.

El consumo energético para desalación e impulsión de agua de mar es otro proceso para el cual se proyecta un alza importante, pasando de 2,98 TWh en 2023 (11,4% del total) a 6,5 TWh en 2034 (19,0% del total), convirtiéndose en el segundo proceso de mayor intensidad de consumo eléctrico. Para el proceso de lixiviación por su parte se proyecta una caída significativa desde 4,9 TWh en 2023 (18,9% del total) a 2,7 TWh en 2034 (8,0%), mientras que para el de fundición se mantendrá su consumo, pasando de 1,6 TWh en 2023 (6,2%) a 1,7 TWh en 2034 (4,9%). Por último, los procesos de mina subterránea, refinería y servicios se mantendrán con participaciones relativamente bajas, ninguno de ellos sobrepasando el 3% del consumo durante el periodo de estudio.

A nivel regional, vemos que Antofagasta, en línea con su alta producción e importantes inversiones mineras a materializarse en los próximos años, seguirá concentrando más de la mitad del uso energético, pasando de 15,07 TWh (57,8% del consumo eléctrico cuprífero nacional) en 2023 a 18,1 TWh (52,9%) en 2034. Atacama por su parte, región que actualmente demanda 2,4 TWh (9,2%), llegaría a consumir 4,42 TWh hacia 2034 (12,9%). Tarapacá pasaría de 2,96 TWh (11,4%) a 4,54 TWh (13,3%) durante el mismo periodo Otra región con un alto crecimiento en su demanda es Coquimbo, que incrementaría su consumo desde 1,42 TWh (5,5%) a 2,44 TWh (7,1%) durante el periodo.

Por otra parte, enfocando el análisis según la condicionalidad de las operaciones vigentes y proyectos, encontramos que si bien al 2023 las faenas actualmente en operación concentran la totalidad del consumo eléctrico esperado en minería cuprífera, al 2034 los proyectos potenciales, posibles y probables llegan a representar alrededor de un 32,1% del total. De igual forma, analizando por tipo o propósito del proyecto, vemos que los proyectos de expansión, reposición y los nuevos, en conjunto, adquirirán una importancia creciente pasando de representar un 4,9% del consumo estimado en 2023 al 44,1% en 2034. Cabe señalar que los proyectos cupríferos nuevos por sí solos serán responsables del 25,3% de la demanda eléctrica esperada al 2034.

Parte del consumo eléctrico esperado provendrá de fuentes limpias. La minería chilena ha realizado y está progresando significativamente en el uso de Energías Renovables No Convencionales. Un importante número de empresas mineras realizaron procesos de renegociación de contratos eléctricos con el objetivo de focalizarlos en energías renovables y con precios más convenientes. Ya en 2023, el 66,6% del consumo eléctrico minero es de fuentes limpias y en 2026 se espera un 78,1% de la demanda eléctrica de la industria provendrá de este tipo de energías.

Tabla de Contenidos

Res	umer	ı Ejecuti	V0	l
1.	Intro	oducció	າ	4
2.	2.1.2.2.2.3.	Proyect Consun Escena	atos consideradosno eléctrico por faenas y procesosrios de consumo eléctricono esperado nacional de electricidad en minería del cobre	5 6
3.	3.1. 3.2. 3.3.	Proyect Proyect Proyect	del consumo anual de energía eléctrica 2023 – 2034 ción a nivel país	10 14 14
4.			consumo eléctrico esperado según la condicionalidad de los proyectos s a nivel país	
5.			consumo eléctrico esperado según tipo de proyectos a nivel país	
6.			consumo eléctrico esperado según procesoución del consumo eléctrico esperado a nivel país	
7.	7.1.	En relace En la m 7.2.1. 7.2.2. 7.2.3.	n energética	24 25 30
8.	Con	nentario	s finales	34
9.		Anexos	capítulo 2: Metodología	37 id en
	9.2.		con cifras de proyección de consumo esperado de electricidad 2023– 2034 tes categorías Proyección de consumo de electricidad según procesos Proyección de consumo de electricidad según condición Proyección de consumo de electricidad por tipo de proyecto	38 38 39
		9.2.4.	Proyección de consumo de electricidad por regiones	

1. Introducción

La energía eléctrica es un insumo estratégico para la minería del cobre, dado que se requiere en sus diversos procesos productivos y servicios. Su impacto en el consumo eléctrico del país también es significativo. En promedio, en los últimos 15 años la minería del cobre ha tenido una participación de un tercio en el consumo nacional de energía eléctrica, situación que se puede explicar en gran parte por tres tendencias que han presionado al alza el consumo. A saber:

- Caída progresiva en las leyes de cobre, lo que responde al envejecimiento de las minas y al incremento en la dureza del mineral. Esta situación ha significado que las empresas tengan que extraer grandes y crecientes volúmenes de mineral para lograr mantener los niveles de producción de cobre fino esperados, situación que conlleva un incremento en el uso de energía en procesos como chancado y molienda.
- Creciente uso de agua de mar, dadas las restricciones para el abastecimiento de agua a través de fuentes continentales y también debido a la preponderancia creciente en la producción de concentrados, que es intensiva en recursos hídricos. Como el agua de mar debe ser impulsada desde la costa a las faenas mineras, se hace intensiva en energía eléctrica.
- Enfoque en la producción de concentrados de cobre, proceso que tiene un uso intensivo de energía eléctrica. En consecuencia, se prevé que la demanda de energía eléctrica también se incrementará en los próximos años.

En este contexto, considerando las tendencias mencionadas, COCHILCO realiza su estimación de consumo de energía eléctrica en minería del cobre hasta el 2034, año en que podría estar en operación gran parte de la actual cartera de proyectos. Así, se muestran los resultados para el periodo 2023-2034 identificando los siguientes factores:

- Consumo eléctrico esperado según tipo de proyecto, sea de carácter Nuevo, Expansión, Reposición u Operación.
- Consumo eléctrico esperado según procesos, sea Concentradora, Lixiviación, Fundición, Refinería, Agua de Mar, Mina Rajo, Mina Subterránea o Servicios.

En cada caso, se realiza un análisis tanto a nivel nacional como regional y se entregan proyecciones con valores esperados así como los límites mínimos y máximos estimados.

2. Metodología

2.1. Proyectos considerados

La proyección de consumo eléctrico en minería del cobre considera faenas mineras actualmente en operación, proyectos mineros en etapa de construcción y proyectos de inversión con posibilidades de concretarse durante el periodo 2023-2034, en base al informe de Inversión en la Minería Chilena - Cartera de Proyectos 2023-2032 publicado por COCHILCO en noviembre de 2023. Estos antecedentes, a su vez, se traducen en una proyección de producción esperada que se plasman en el informe "Proyección de la producción esperada de cobre, periodo 2023 – 2034, publicado en diciembre de 2023 por COCHILCO.

En paralelo a lo anterior, atendiendo al creciente uso de agua de mar, la proyección de consumo eléctrico considera la operación actual y la entrada en operación de plantas de desalación e impulsión de agua de mar durante el periodo en base al Estudio de Proyección de Consumo de Agua Período 2023 – 2034, publicado por COCHILCO en mayo de 2023.

2.2. Consumo eléctrico por faenas y procesos

Desde 1991 COCHILCO calcula los coeficientes de consumo unitario de energía por faena y por procesos en base a datos operacionales provistos por las empresas mineras del país. A partir de esta información, en esta edición del estudio se proyectan de forma determinística los coeficientes para el periodo 2023-2034 separados por gran y mediana minería. Para esto, se realiza una regresión normal-log basada en los consumos unitarios observados durante el periodo 2001-2022. Los resultados de dicha extrapolación se muestran en la Tabla 1 y 2.

Cabe señalar que la construcción de los coeficientes involucra dos supuestos:

- El consumo unitario de energía eléctrica por procesos es creciente en el tiempo debido principalmente al envejecimiento de las minas y a menores leyes de mineral a procesar.
- No habrá cambios tecnológicos que incidan significativamente en los procesos mineros.
 Es decir, no se abordan posibles avances en eficiencia energética que puedan implementarse a futuro tanto en operaciones existentes como en proyectos nuevos, lo que incidiría en un menor consumo de electricidad.

Tabla 1: Proyección de consumos unitarios de electricidad por procesos gran minería 2023 – 2034

PROCESOS	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Mina Rajo	200	201	201	201	201	202	202	202	202	202	203	203
KWh/ TMF Cu												
Mina Subterránea	834	838	842	846	850	854	857	861	864	867	870	873
KWh/ TMF Cu												
Concentradora	3.436	3.443	3.449	3.456	3.462	3.467	3.473	3.478	3.484	3.489	3.494	3.498
KWh/TMF Cu												
Fundición	1.395	1.400	1.406	1.411	1.416	1.421	1.425	1.430	1.434	1.438	1.442	1.446
KWh/TM Conc. Proce.												
Refinería	200	200	200	200	200	400	400	404	404	400	402	402
KWh/ TMF Cu	398	398	399	399	399	400	400	401	401	402	402	402
LX/SX/EW	2.046	2.057	2.007	3.877	3.887	2 000	2.005	2.012	2 022	2.020	2.020	2.045
KWh/ TMF Cu	3.846	3.857	3.867	3.877	3.887	3.896	3.905	3.913	3.922	3.930	3.938	3.945
Servicios	166	166	167	167	167	168	168	168	160	160	160	160
KWh/ TMF Cu	166	100	10/	10/	167	108	108	108	168	169	169	169

Fuente: COCHILCO 2023

Tabla 2: Proyección de consumos unitarios de electricidad por procesos mediana minería 2023 – 2034

PROCESOS	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Mina Rajo	252	255	258	261	264	266	269	271	274	276	278	281
KWh/ TMF Cu												
Mina Subterránea	539	535	531	527	524	520	517	514	511	508	504	502
KWh/ TMF Cu												
Concentradora	4.351	4.353	4.356	4.358	4.359	4.361	4.363	4.365	4.366	4.368	4.369	4.371
KWh/TMF Cu												
Fundición	2.425	2.436	2.446	2.456	2.466	2.475	2.484	2.493	2.501	2.509	2.517	2.524
KWh/TM Conc. Proce.												
Refinería	200	200	399	200	399	400	400	401	401	402	402	402
KWh/ TMF Cu	398	398	399	399	399	400	400	401	401	402	402	402
LX/SX/EW	2 0 4 4	2.843	2.843	2.842	2.842	2.841	2.840	2.840	2 020	2.839	2 020	2 020
KWh/ TMF Cu	2.844	2.643	2.643	2.642	2.642	2.641	2.840	2.840	2.839	2.639	2.839	2.838
Servicios	98	98	00	00	00	00	98	00	98	00	99	00
KWh/ TMF Cu	98	98	98	98	98	98	98	98	98	98	99	99

Fuente: COCHILCO 2023

Se debe acotar además que, a partir del año 2011, los coeficientes unitarios de energía en Servicios incorporan el consumo de electricidad por concepto de uso de agua de mar, por tanto, el pronóstico de este ítem se realiza sobre coeficientes estimados para el periodo 2001-2010, con el fin de no hacer una doble proyección respecto a uso de agua de mar, que en este informe está como ítem aparte.

Con respecto a los procesos de desalación e impulsión para el uso de agua de mar, se utiliza la metodología descrita en el informe *Proyección del Consumo de Agua en la Minería del Cobre en Chile 2023-2034* para efectuar los cálculos de la potencia y energía eléctrica a consumir en plantas desaladoras y sistemas de impulsión de agua de mar.

2.3. Escenarios de consumo eléctrico

En base a la información histórica sobre la materialización de los proyectos de inversión se determina la probabilidad de ocurrencia de producción prevista en las fechas presentadas.

Considerando la incertidumbre propia de las operaciones mineras como también de sus proyectos de inversión, se estima la probabilidad de que éstos alcancen su capacidad nominal esperada en las fechas tentativas. Con todo esto, se definen tres escenarios, cada uno con distintos supuestos:

- **Escenario máximo:** considera que todas las operaciones continúan según lo planificado y los proyectos posibles, potenciales y probables se ponen en marcha en las fechas y de acuerdo a las capacidades productivas estimadas actualmente por sus titulares.
- Escenario más probable: considera que las operaciones no alcanzan los resultados planificados por los titulares en tanto que existen riesgos considerables de sufran retrasos y variaciones a la baja en su producción real con respecto a lo planificado.
- **Escenario mínimo:** ajusta el escenario más probable con cifras inferiores dentro de un criterio técnico razonable.

Luego, para cada escenario se estima el consumo de electricidad a ocupar en cada faena y proceso. Esto se puede representar de acuerdo a la siguiente ecuación:

$$Cons_{ijkt} = ProdEst_{ijt}PondProd_{ikt}CoefUnit_{jt}$$

Donde,

- Cons_{ijkt}: Consumo de electricidad (en TWh) en la faena i, en el proceso j, de acuerdo a la condición/estado k del proyecto, en el año t.
- t: Periodo considerado (años 2021 2032).
- *i*: Faena minera considerada.
- *j*: Proceso minero considerado.
- k: Condición/estado del proyecto minero considerado¹.
- ProdEst_{ijt}: Capacidad de procesamiento estimada según diseño en la faena i, en el proceso j, y la condición/estado k del proyecto en el periodo t.
- $PondProd_{ikt}$: Ponderador de la producción estimada en base a información histórica según la condición de un proyecto k en una faena minera i en el periodo t. $PondProd_{ikt} \in (0,1]$
- Coef Unit_{jt}: Consumo unitario estimado de electricidad en el proceso j en el periodo t. Estos son los valores reportados en la tabla 1 y tabla 2.

La modelación de las variaciones en cada escenario depende de la variable $PondProd_{ikt}$. Como sus valores fluctúan entre 0 y 1, mientras mayor sea $PondProd_{ikt}$, mayor será el consumo de energía. Así, en el escenario de consumo $m\'{a}ximo$, donde no hay riesgos de producción ni retrasos, todas las ponderaciones son equivalentes a 1, mientras que en los escenarios $m\'{a}s$ probable y $m\'{i}nimo$ son consecuentemente inferiores.

Para visualizar lo anterior, en la tabla 3 se ilustra la matriz de ponderadores de producción para el caso *más probable*. Este consumo se calcula sobre el supuesto que los proyectos

¹ Las condiciones/estados de los proyectos que se establecen en el presente informe son: Base, Probable, Posible-factibilidad, Potencial-factibilidad y Potencial-prefactibilidad.

mineros sufren retrasos en su ejecución y variaciones en su producción estimada respecto de la real. Para modelar este efecto se construyó un vector de ponderadores de producción determinísticos en base a información histórica en la ejecución de proyectos mineros, según condición y fecha de puesta en marcha. El cálculo de los vectores corresponde al promedio ponderado de las razones de producción real sobre la producción proyectada en faenas mineras de igual condición y estado.

Tabla 3: Ponderadores determinísticos de producción futura probable

Condición/estado del	Año planificado del proyecto											
proyecto	1	2	3	4	5	6	7	8	9	10	11	12
Potencial/Prefactibilidad	0,15	0,16	0,28	0,32	0,37	0,42	0,45	0,49	0,55	0,69	0,70	0,71
Potencial/Factibilidad	0,37	0,42	0,45	0,49	0,55	0,69	0,70	0,71	0,80	0,80	0,83	0,84
Posible/Factibilidad	0,49	0,55	0,69	0,70	0,71	0,80	0,80	0,83	0,84	0,84	0,85	0,88
Probable	0,71	0,80	0,80	0,83	0,84	0,84	0,85	0,88	0,92	0,92	0,92	0,93
Base	0,80	0,83	0,84	0,84	0,85	0,88	0,92	0,92	0,92	0,93	0,93	0,93

Fuente: COCHILCO

En la tabla 3 se ilustra la matriz de ponderadores de producción para el caso mínimo. Este cálculo se basa en un análisis histórico de cómo se han comportado aquellos proyectos incluidos alguna vez en la cartera de inversiones respecto del cumplimiento de sus plazos de materialización, por ejemplo variaciones en las condiciones macroeconómicas, retrasos en la aprobación de permisos, retrasos en la ingeniería, etc., o el cumplimiento de las metas productivas estipuladas en la oportunidad que estaban incluidos en dicha cartera.

Tabla 4: Ponderadores determinísticos de producción futura mínima

Condición/estado del	Año planificado del proyecto											
proyecto	1	2	3	4	5	6	7	8	9	10	11	12
Potencial/Prefactibilidad	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15	0,15
Potencial/Factibilidad	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37	0,37
Posible/Factibilidad	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49	0,49
Probable	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71	0,71
Base	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80

Fuente: COCHILCO

De esta manera, se determinó un vector de ponderadores producción mínimo de los proyectos mineros según su condición en base a la información histórica de COCHILCO y juicio de experto. Para esto, primero se efectuó el cálculo de los vectores correspondiente al promedio ponderado de las razones de producción real sobre la producción proyectada en faenas mineras de igual condición y estado. En segunda instancia, estos valores fueron nuevamente ponderados por valores menores a la unidad según juicio de experto, con motivo de determinar valores mínimos realistas, de acuerdo a la condición del proyecto. Para este caso del escenario mínimo, se consideró un mayor retraso en las decisiones de inversión para los proyectos en las categorías posibles y potencial, lo que si bien no elimina los proyectos, los deja con una menor probabilidad de materialización.

2.4. Consumo esperado nacional de electricidad en minería del cobre

Finalmente, una vez estimados los consumos *máximo*, *mínimo* y *más probable*, se estima el consumo esperado para cada faena y proceso considerado a través de una simulación de Montecarlo en función de los valores encontrados. De tal forma, el consumo anual queda representado como:

$$C_t = \sum_i \sum_j \beta_{ijkt}(Cons^{max}_{ijkt}, Cons^{MP}_{ijkt}, Cons^{min}_{ijkt})$$

Donde,

- C_t : Consumo de electricidad (en TWh) en minería del cobre en el año t.
- $Cons_{ijkt}^{max}$, $Cons_{ijkt}^{MP}$, $Cons_{ijkt}^{min}$: $Consumo\ máximo$, $más\ probable\ y\ mínimo\ (en\ TWh)$ respectivamente en la faena i, en el proceso j, de acuerdo a la condición/estado k del proyecto, en el año t.

3. Proyección del consumo anual de energía eléctrica 2023 – 2034

En este capítulo se muestra el resultado global de la proyección del consumo de energía eléctrica en la minería del cobre en el período 2023 – 2034. El consumo esperado se acompaña de los escenarios de consumo máximo y mínimo, según se explicó en la metodología.

3.1. Proyección a nivel país

La Figura 1 proyecta el consumo futuro esperado de electricidad de la minería del cobre entre 2023 y el 2034. Durante el periodo completo, se espera que el consumo eléctrico esperado crezca desde 26,05 TWh hasta 34,22 TWh (~2,6% CAGR), lo que representa un incremento del 31,4% versus un 20,7% de aumento en la producción de cobre en el mismo periodo analizado.

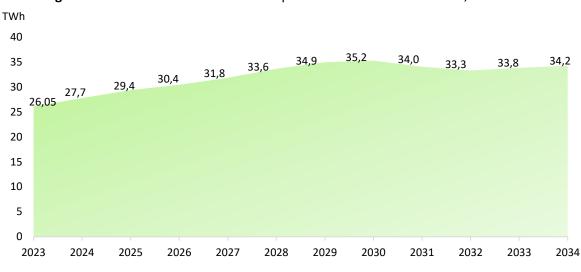


Figura 1: Consumo eléctrico nacional esperado de la minería del cobre, 2023-2034

Fuente: COCHILCO

Para contextualizar las proyecciones de demanda de electricidad por parte de la minería del cobre, es necesario comprender el comportamiento de la producción esperada de cobre. La proyección de producción esperada de cobre para los próximos diez años se basa en la condicionalidad de materialización de los proyectos incluidos en la cartera de inversiones 2023 contenidos en el Informe "Proyección de la producción esperada de cobre, periodo 2023-2034", Cochilco 2023. Este Informe muestra que la proyección de producción esperada de cobre para el periodo 2023-2034 tendrá un crecimiento del 20,7% respecto a la producción real de 2022 y respecto de la producción esperada en 2023 lo siguiente:

- Alcanzando Chile una producción de cobre de 6,43 millones de toneladas al año 2034;
- A una tasa de crecimiento promedio de 1,7%;
- Con un peak en el año 2029 de 6,9 millones de toneladas (Figura 2).

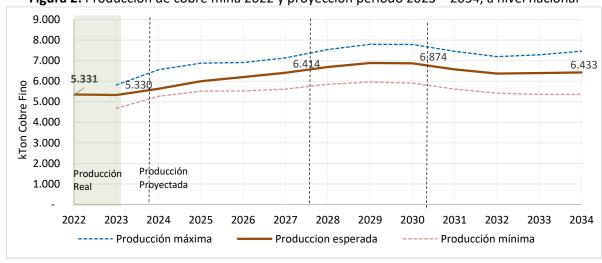


Figura 2: Producción de cobre mina 2022 y proyección periodo 2023 – 2034, a nivel nacional

Fuente: Informe "Proyección de la producción esperada de cobre, periodo 2023-2034", Cochilco 2023

De acuerdo a estimaciones Cochilco de la proyección de producción esperada de cobre², las variaciones productivas se analizan en tres periodos:

- 2023 2027: Se espera una producción de 5,33 millones de toneladas para 2023, lo que representa una producción prácticamente idéntica a lo alcanzado en 2022. Se esperaba que el año 2022 fuese el año pivote de la recuperación productiva a consecuencia de las medidas sanitarias y retrasos en las cadenas de suministro debido a la Pandemia del Covid en los años 2020 y 2021, sin embargo en este análisis este se retrasa para el año 2023. Así, se espera que el año 2024 termine con la tendencia a la baja productiva, para alcanzar una producción esperada de 5,63 millones de toneladas de cobre fino aproximadamente. El crecimiento de la producción esperada para el periodo 2023-2027 será a una tasa anual de 4,7%, alcanzando el año 2027 las 6,4 millones de toneladas de cobre.
- 2027 2030: El incremento productivo aumenta en este período a una tasa anual promedio del 2,3%, hasta alcanzar una producción esperada de 6,87 millones de toneladas de cobre fino en 2030. En informes anteriores, se proyectaba una producción esperada de más de 7 millones de toneladas; sin embargo, este informe corrige dicha cifra a un peak de 6,87 millones de toneladas de cobre fino.
- 2031 2034: Durante este período, se anticipa un descenso anual en la producción de cobre del 1,6%, disminuyendo de 6,87 millones de toneladas en 2030 a 6,43 millones de toneladas en 2034. Esta reducción se debe a que las operaciones

² Extracto del informe Proyección de la producción esperada de cobre 2023-2034, páginas 5 y 6, Cochilco 2023

existentes en 2023, tanto de sulfuros como de óxidos, y en particular las operaciones de óxido, disminuirán progresivamente su producción debido al envejecimiento natural de las leyes del mineral por su explotación, disminución de reservas, y en donde en importantes faenas se prevé un cierre en las líneas de óxido en el período analizado, sin perspectivas de proyectos de reposición que permitan su continuidad.

Cabe señalar en esta ocasión, que comparando con las estimaciones de proyección de producción de años anteriores, la producción esperada de cobre en la próxima década es comparativamente menor. El motivo de esta baja en las estimaciones esperadas de producción de cobre, tiene diferentes causas que han producido una ralentización de la producción de cobre en el país, entre ellas están:

- a) Dos grandes proyectos salieron del horizonte temporal de evaluación. Primero, se considera que el proyecto "Expansión de la Concentradora" de El Abra, entrará en operación en 2033, el cual tenía presupuestado un aporte productivo anual promedio de 200 kTon de Cobre fino. Segundo el proyecto Nueva Unión, del JV de Teck y NewGold GoldCorp, retrasa su desarrollo hasta el año 2034 según comunicado de Teck, el cual tenía presupuestado un aporte productivo anual promedio de 150 kTon de Cobre fino.
- b) Existen proyectos de gran envergadura cuya puesta en marcha se postergó como son los proyectos: i) Santo Domingo de Capstone Copper postergado de 2025 a 2028, ii) Desarrollo Distrito Centinela o segunda concentradora de AMSA postergado de 2026 a 2028, iii) El Nuevo Proyecto Vizcachitas de Los Andes Copper es postergado de 2027 a 2029. Por nombrar algunos de los grandes proyectos.
- c) Hay una disminución promedio de 10% en la producción de cobre fino de Codelco para los años 2023, 2024, 2025 y 2026, en relación a los PND de 2022 vs 2023.
- d) Ha habido optimización de diferentes iniciativas, con análisis de impactos ambientales y con ingenierías más exhaustivas
- e) Efectos rezago de la pandemia
 - ✓ Algunas operaciones se paralizaron temporalmente o bien estuvieron con mantención al mínimo lo que hoy implica hoy menor producción ya existente
 - ✓ Se privilegió mantener operación
 - ✓ Diversos proyectos no avanzaron en sus ingenierías ni en la preparación de líneas bases medioambientales durante los años de pandemia
- f) Problemas estructurales

- ✓ Ejemplo de ello son las dificultades geomecánicas que ha enfrentado Chuquicamata subterránea Codelco subterránea que ha significado un retraso en el escalamiento para llegar a su capacidad de producción de diseño
- ✓ Proyectos que no han producido lo estipulado, ejemplo son divisiones de Codelco también han enfrentado menores leyes de mineral, menores tasa de procesamiento y recuperación de concentradora

g) Problemas operacionales

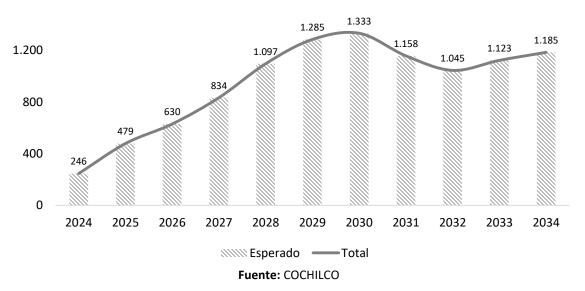
✓ Problemas de agua

Es así como consecuentemente, dado que las proyecciones de consumo eléctrico minero están basadas en las de producción, la estimación de consumo esperado de electricidad del sector minero del cobre realizada este año, es menor que la de trabajos anteriores, aun cuando se observa la misma tendencia, es decir, el consumo eléctrico minero crece y que este crecimiento es mayor respecto al aumento de producción de cobre en el país en la próxima década. Sin embargo, el crecimiento no es uniforme.

En la Tabla 5 a continuación, se ilustra el crecimiento estimado del consumo eléctrico y la producción de cobre mina a nivel nacional durante los años 2023 y 2034, dividiendo el periodo en intervalo cuatrienal. De igual forma en la última columna se ilustra la variación acumulada durante todo el periodo. Se puede ver en esta tabla que en el período analizado los requerimientos proyectados de energía eléctrica son progresivamente mayores a las variaciones esperadas en producción de cobre mina. Es decir, con el paso del tiempo, se requerirá de más electricidad para producir la misma cantidad de cobre.

Tabla 5: Variación (%) del consumo eléctrico y producción cobre mina en Chile, 2023–2034

Escenario	Variable	23-26	27-30	31-34	23-34
Esperado	Consumo energía eléctrica	16,7	10,8	0,6	31,4
Esperado	Producción cobre mina	16,3	7,2	-2,2	20,7


Fuente: COCHILCO

Esta situación responde a razones estructurales tales como envejecimiento de las minas, la caída en las leyes del mineral, decaimiento de los minerales oxidables —lo que a su vez conduce a una producción más enfocada en concentrados, proceso que es altamente intensivo en energía eléctrica y en agua, ante lo cual varias mineras han recurrido a la impulsión de agua de mar, lo que a su vez significa un uso aún mayor de electricidad. Este desarrollo ha significado un verdadero cambio en la matriz productiva de la industria, lo que indudablemente supondrá una mayor intensidad en el consumo de energía eléctrica.

3.2. Proyección de demanda por potencia eléctrica

En la Figura 3 se ilustra la proyección de demanda acumulada de potencia eléctrica requerida para satisfacer el consumo eléctrico esperado de la minería del cobre³ durante el periodo 2023-2034. Vemos que la potencia será creciente hasta el año 2030, disminuyendo a partir de entonces hasta el 2032 para volver a subir levemente hacia el 2034. Esta disminución de demanda acumulada de potencia eléctrica entre 2030-2024 se debe a una menor producción esperada de cobre en el período ya que las operaciones existentes en 2023, tanto de sulfuros como de óxidos, y en particular las operaciones de óxido, disminuirán progresivamente su producción y en importantes faenas hoy se prevé un cierre en las líneas de óxido sin perspectivas de proyectos de reposición que permitan su continuidad (COCHILCO 2023). En suma, se requerirá agregar una capacidad de generación eléctrica de 1.185 MW hacia el año 2034.

Figura 3: Proyección de la demanda acumulada de potencia eléctrica (MW) requerida por la minería del cobre, 2024-2034

3.3. Proyección por regiones

La Figura 4 ilustra la evolución del consumo energético en minería por región en los años 2023 y 2034. La Figura 5 por su parte muestra la participación regional del consumo a lo largo del periodo de estudio. De lo anterior se observa que Antofagasta es, con bastante distancia, la región que más consume energía eléctrica, concentrando al 2023 más de la mitad del uso de energía con 15,1 TWh que representa un 57,8%, porcentaje que se espera disminuya al 52,9% hacia el 2034. Le siguen las regiones de Atacama con 2,4 TWh (9,2%), que crecería

³ Los incrementos anuales de energía eléctrica proyectada se convierten en demanda de potencia de generación asumiendo que las centrales de generación debieran tener en promedio un factor de carga mínimo del 78,7% (6,9 Giga Watts-hora de energía útil por cada Mega Watt de potencia), considerando que la central debe disponer de tiempo de mantención regular, de potencia en giro, además que parte de la energía generada se auto consume en la central y otra parte se disipa en la transmisión (Coordinación Eléctrica Nacional).

hasta 4,4 TWh al 2033 (12,9%); Tarapacá con 2,96 TWh (11,4%) que crecería a 4,5 TWh al 2034 (13,3%); O'Higgins con 2,1 TWh (8,2%), que se mantendría en torno a 2,0 TWh al 2034 (5,9%) y Coquimbo, que incrementaría su consumo desde 1,4 TWh (5,5%) a 2,4 TWh (7,1%) durante el periodo.

Figura 4: Consumo eléctrico (TWh) esperado por región en la minería del cobre, 2023-2034 40

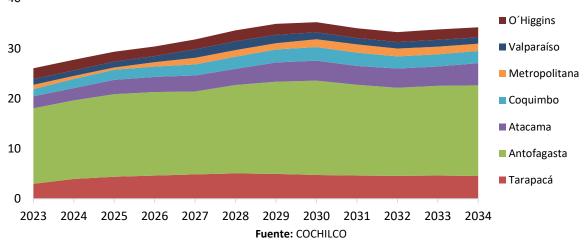
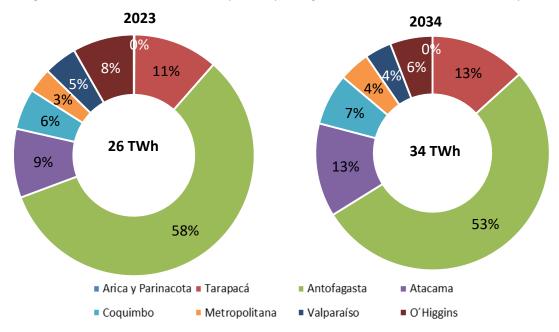



Figura 5: Consumo eléctrico (%) esperado por región en la minería del cobre, 2023 y 2034

Fuente: COCHILCO

3.4. Consumo esperado en la minería del cobre en relación al total nacional

A partir de las proyecciones de demanda eléctrica del Coordinador Eléctrico Nacional⁴ junto a las estimaciones del presente informe, podemos anticipar que la demanda eléctrica de la minería del cobre respecto del consumo eléctrico nacional fluctuaría ligeramente de 34,4% en 2023 a un máximo de 38,0% en 2030 bajando levemente a 34,1% en 2034, con un promedio del 36,0% entre 2023-2034. En la figura 6 se presenta el desglose por tipo de cliente junto a la tasa de participación de la minería cuprífera.

Ahora bien, como es esperar, esta tasa de participación es significativamente mayor en regiones del norte con una industria minera prevalente. En efecto, de la figura 7 se observa que la actividad minera en Antofagasta concentra el 85% del consumo agregado en la región en los años 2023 y 2034 mientras que en la Región Metropolitana sólo representa alrededor del 7 y 5 % del total regional.

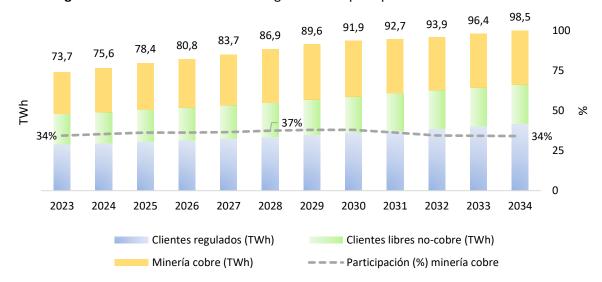
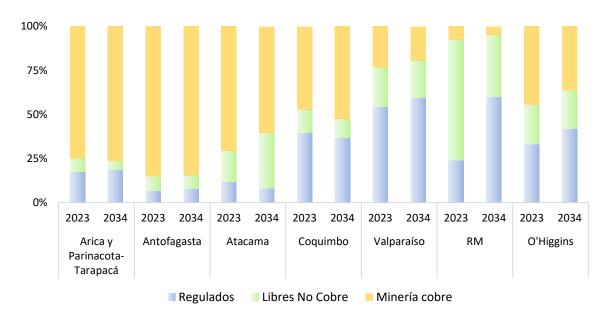



Figura 6: Consumo estimado de energía eléctrica por tipo de cliente a nivel nacional

Fuente: COCHILCO en base a estimaciones propias y del Coordinador Eléctrico Nacional

Figura 7: Participación (%) en el consumo eléctrico por tipo de cliente a nivel regional

⁴ Véase "Proyección de demanda eléctrica 2022 – 2042" (Coordinador Eléctrico Nacional, diciembre 2023)

Fuente: COCHILCO en base a estimaciones propias y del Coordinador Eléctrico Nacional

4. Análisis del consumo eléctrico esperado según la condicionalidad de los proyectos

Como vimos previamente en la metodología, el consumo eléctrico esperado tiene su base más cierta en las actuales operaciones y en los proyectos ya en construcción. En cambio, el consumo eléctrico futuro que tendrían los proyectos que aún no cuentan con la decisión de construirse tiene un grado de incertidumbre creciente en el tiempo, por lo que su magnitud depende de posibles retrasos en su ejecución así como de eventuales mermas de producción respecto a lo planificado.

En este contexto, este capítulo se destina al análisis del consumo eléctrico esperado de los proyectos mineros de cobre según la condicionalidad de su ejecución.

4.1. Análisis a nivel país

Dada la construcción metodológica y considerando que el nivel de incertidumbre es creciente en el tiempo, la relevancia de los proyectos que aún no cuentan con la decisión de construirse será mayor conforme aumentan los años. Así, como se aprecia en la Figura 8, durante el periodo 2023-2034 se espera que prácticamente la totalidad del consumo energético proyectado en minería provenga de operaciones y proyectos ya en construcción (base), constituyendo estos un 99,9% el 2023 y un 67,9% el 2034. En relación a los proyectos probables, posibles y potenciales, vemos que progresivamente adquirirán una mayor relevancia hasta representar un 32,1% (equivalente a unos 10,97 TWh) del consumo esperado total al 2034.

40 30 20 10 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 Base ■ Posible ■ Potencial ■ Probable Fuente: COCHILCO

Figura 8: Proyección del consumo eléctrico nacional esperado de la minería (TWh) según condicionalidad, 2023-2034

En la Tabla 6 se ilustra numéricamente la proyección de la Figura 8. Al observar el período 2023-2034 completo, el consumo eléctrico esperado de las operaciones en condición base tiene leves variaciones durante el período de análisis, creciendo a una tasa anual compuesta de 2,9 % hasta el 2028, para luego decrecer a una tasa anual compuesta del 4,2% hacia el fin del periodo de estudio. La razón principal de este declive estriba en una menor producción hidrometalúrgica, la cual pasaría de una participación del 24,5% de la producción total en 2023 con 1.306 mil toneladas, a un 11,1% hacia 2034⁵ con un poco más de 713 mil toneladas, lo que representa una caída de 45,4% en el período analizado.

En paralelo, a partir de 2027, la demanda eléctrica crecerá por la puesta en marcha de los proyectos probables, posibles, potenciales, registrando una tasa anual compuesta de crecimiento de 30,0%.

Tabla 6: Proyección del consumo eléctrico nacional esperado (TWh) según la condicionalidad,

					202	3-2034						
Condición	23	24	25	26	27	28	29	30	31	32	33	34
Base	26,03	27,63	28,81	29,40	29,81	30,06	29,31	27,93	25,99	24,74	23,70	23,25
Probable	0,02	0,03	0,43	0,76	1,11	1,99	3,33	4,60	5,30	5,69	6,19	6,15
Posible	0,00	0,09	0,11	0,24	0,34	0,85	1,44	1,71	1,67	1,68	1,99	2,00
Potencial	0,00	0,00	0,00	0,00	0,55	0,71	0,83	1,00	1,08	1,15	1,92	2,82
Total	26,05	27,75	29,35	30,40	31,80	33,62	34,91	35,24	34,04	33,26	33,80	34,22

Fuente: COCHILCO

⁵ De las actuales 34 operaciones activas, hacia el 2034 solo quedaran 20 operativas, 9 pertenecientes a la gran minería estatal y privada, más las 6 operaciones de Enami y 5 operaciones de mediana minería. Para mayor información, véase "Proyección de la producción esperada de cobre 2023 – 2034" (Cochilco, 2023).

5. Análisis del consumo eléctrico esperado según tipo de proyecto

El presente capítulo está destinado a analizar la distribución del consumo eléctrico esperado entre las operaciones vigentes y los proyectos según su tipo. Es decir, el propósito que tienen las compañías por emprenderlos. En este contexto, algunos proyectos son de reposición — para recuperar su capacidad productiva que se hubiere visto disminuida por efecto del deterioro de su base mineral — otros de expansión —para sustentar su competitividad vía aumento de escala de producción — y otros de carácter nuevo —cuyo desarrollo parte prácticamente de cero.

5.1. Análisis a nivel país

La Figura 9 y la Tabla 7 muestran el consumo eléctrico esperado de la minería del cobre nacional, distribuido por operaciones y tipos de proyectos. Se puede observar que las operaciones vigentes irán decreciendo en el tiempo, en tanto los proyectos de expansión, reposición y particularmente los nuevos comienzan a adquirir una importancia creciente en este período de análisis 2023-2034.

Al 2023 las faenas en operación representan el 95,1% del consumo de energía eléctrica con 24,8 TWh. Este consumo comienza a decaer en prácticamente todos los años del periodo de estudio, llegando a 19,1 TWh hacia el 2034, representando un 55,9% ese año.

En paralelo, para algunas de las actuales operaciones se contemplan proyectos de reposición o de expansión, que en su conjunto permiten esperar una demanda adicional de 6,4 TWh (18,9% del total) al 2034.

■ Expansión ■ Reposición ■ Operando

Figura 9: Proyección del consumo eléctrico (TWh) nacional esperado según tipo de proyectos, 2023-2034

Fuente: COCHILCO

En tanto se proyecta que los proyectos nuevos pasen de representar el 3,7% del consumo esperado en 2023 al 25,3% en 2034. En términos absolutos esto implica pasar desde 0,96TWh a 8,7 TWh entre los años considerados.

La Tabla 7 a continuación se presenta el desglose numérico expuesto en la figura anterior.

Tabla 7: Proyección del consumo eléctrico nacional esperado (TWh) por tipo de proyectos,

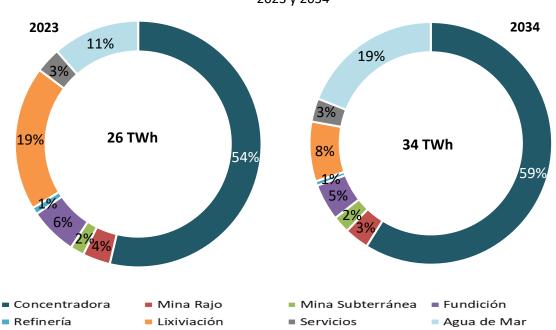
					202	3-2034						
Tipo	23	24	25	26	27	28	29	30	31	32	33	34
Nuevo	0,96	2,05	2,41	2,52	3,12	4,22	5,73	6,29	6,55	6,66	7,85	8,66
Expansión	0,24	0,41	1,15	1,34	1,67	1,65	1,68	1,93	2,00	2,04	2,12	2,13
Reposición	0,08	0,16	0,31	0,52	0,62	1,42	1,96	3,06	3,62	3,96	4,40	4,32
Operando	24,77	25,13	25,49	26,02	26,39	26,32	25,54	23,96	21,87	20,60	19,42	19,11
Total	26,05	27,75	29,35	30,40	31,80	33,62	34,91	35,24	34,04	33,26	33,80	34,22

Fuente: COCHILCO

6. Análisis del consumo eléctrico esperado según proceso

Para efectos del análisis de consumo eléctrico, COCHILCO divide la minería del cobre en ocho procesos intensivos en energía eléctrica: uso de agua de mar (desalación y/o impulsión), minería subterránea, minería a rajo abierto, lixiviación, extracción por solventes, electrowinning (LX-SX-EW), concentradora, fundición, refinería y servicios. Considerando que cada uno emplea cantidades diferentes de energía, resulta útil desagregarlos para comprender su evolución futura.

Como se mencionó en la metodología, la proyección esperada de consumo se basa en dos supuestos. Primero, no habrá cambios tecnológicos disruptivos en minería que incidan significativamente en los procesos mineros. Segundo, el consumo unitario de energía eléctrica por procesos es creciente en el tiempo debido principalmente al envejecimiento de las minas y a menores leyes del mineral.


6.1. Distribución del consumo eléctrico esperado a nivel país

El resultado a nivel país del consumo eléctrico esperado por proceso se muestra en la Figura 10. Luego, en la Figura 11, se ilustra la participación porcentual del consumo de cada proceso específicamente en los años 2023 y 2034.

40 30 20 10 0 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 ■ Concentradora ■ Mina Rajo ■ Fundición ■ Mina Subterránea Refinería Lixiviación Servicios Agua de Mar

Figura 10: Consumo eléctrico esperado (TWh) de la minería del cobre a nivel nacional por procesos, 2023-2034

Fuente: COCHILCO

Figura 11: Consumo eléctrico esperado (%) de la minería del cobre a nivel nacional por procesos, 2023 y 2034

Fuente: COCHILCO

Para el 2023 se estima que el mayor consumo de energía eléctrica provenga de la Concentradora con 14,0 TWh, lo que representa el 53,7 % de la energía eléctrica demandada. Hacia el 2034, la demanda de electricidad de este proceso se incrementará en un 44,0% llegando a 20,2 TWh,lo que representa un 58,9% el 2034. Esto se debe a que gran parte de los proyectos de expansión y nuevos están enfocados en la obtención de concentrados de cobre y también debido a las menores leyes, lo que implica que haya una mayor cantidad de mineral a procesar. En efecto, COCHILCO espera que la producción de concentrados (considerando aquellos procesados internamente como aquellos exportados) aumente desde 4.02 millones en 2023 a de toneladas a 5,72 millones de toneladas en 2034, lo que se traduce en un incremento del 42,1%. Para mayor información véase "Proyección de producción esperada de cobre 2023 – 2034" (COCHILCO, 2023).

Vinculado al incremento de la participación de la Concentradora se cuenta el declive en la producción esperada de cátodos SX-EW, lo que se refleja en que el consumo eléctrico de los procesos de lixiviación experimentarán una caída desde 4,9 TWh en 2023 a 2,7 TWh en 2034, pasando de representar un 18,9% a un 8,0% del total al final del periodo de estudio. Lo anterior obedece a que la producción esperada de cátodos SX-EW decrecería en el período de un 45,4%, dado el progresivo agotamiento de óxidos de cobre y el consecuente cierre de operaciones hidrometalúrgicas.

El proceso de fundición fluctúa entre un consumo esperado de 1,6 TWh en 2023 (6,2% del total) a 1,7 TWh (4,9%) hacia el fin periodo. En líneas generales hay estabilidad en la producción de las principales fundiciones del país con la excepción del cierre de Ventanas y la posible entrada en operación hacia el 2027 del proyecto de modernización de la fundición Hernán Videla Lira llamado Nueva Paipote. Cabe señalar que si bien se observa un cambio en la estructura productiva de cobre en Chile (mayor producción de concentrados versus una menor producción de cátodos SX-EW), no es esperable que esto se traduzca en un aumento similar en la producción de las Fundiciones en tanto que no hay planes concretos para una expansión significativa de capacidad.

Por último, los procesos de mina subterránea, refinería y servicios se mantendrán con participaciones relativamente marginales, con ninguno sobrepasando el 2% del consumo eléctrico esperado durante todo el periodo de estudio.

Por otra parte, la escasez de agua en algunas regiones del norte del país ha impulsado a la minería a buscar opciones para enfrentar esta realidad y ha llevado a las empresas a privilegiar la construcción de plantas desalinizadoras. Es así como un ítem que ha tenido y seguirá cobrando una importancia creciente en el consumo eléctrico en el norte del país es el uso de agua de mar, lo que conlleva la desalinización y especialmente la impulsión del agua a las faenas mineras.

Figura 12: Proyección consumo eléctrico esperado (TWh) por uso de agua de mar en la minería del cobre 2023- 2034

Fuente: COCHILCO

Esto responde al aumento de operaciones de concentración, proceso altamente intensivo en el uso de agua, insumo particularmente escaso en Antofagasta y Atacama. En efecto, COCHILCO en su estudio de "Proyección de consumo de agua en la minería del cobre, Período 2023-2034" estima que el consumo de agua de mar se incrementaría un 118,3% entre 2023 y 2034, pasando de un consumo estimado de agua de mar de 7,1 m³/s a 16,0 m³/s ⁶. A partir de lo anterior, se espera que el consumo eléctrico requerido para desalación e impulsión de agua de mar aumente un 118,3%, pasando de un consumo eléctrico estimado de 2,98 TWh en 2023 a 6,5 TWh en 2034. Con esto, se proyecta que a fines del periodo la impulsión y desalación de agua de mar será el proceso de mayor intensidad en consumo energético después de la Concentradora, con un 19,0CAPA% del total.

Cabe señalar que el uso de agua de mar no es siempre factible técnica, económica o socialmente. La localización de las operaciones es vital en el análisis, pues no todas pueden abastecerse de agua de mar. En esa misma línea la búsqueda de sinergias entre operaciones mineras u otros sectores es fundamental para el desarrollo del uso de agua de mar⁷. En los últimos años ha habido diferentes conversaciones con actores del mundo público, académico, privados para analizar este tema con una visión al largo plazo y ver posibilidad de un desarrollo de infraestructura hídrica compartida.

⁶ A nivel porcentual se espera que el uso de agua de mar a nivel regional para el 2032 se distribuya de la siguiente manera: 63% para la región de Antofagasta, un 16% para la región de Atacama, un 14% para Tarapacá y de un 8% para la región de Coquimbo.

⁷ Estudio Proyección de demanda de agua en minería del cobre 2022-2033, Cochilco 2022.

7. La transición energética

7.1. En relación al suministro eléctrico en Chile

Hoy en día se viene dando una revolución tecnológica en el desarrollo de las energías renovables, la incorporación de electricidad a nuevas actividades y la preocupación de la comunidad internacional por descarbonizar la matriz energética mundial con el objeto de reducir suficientemente las emisiones de gases de efecto invernadero, en un contexto de hacer frente al cambio climático. Para enfrentar este escenario, mundialmente se ha posicionado como herramienta principal a la transición energética, que es el cambio de un sistema energético que se basa en combustibles fósiles, a uno de bajas emisiones o sin emisiones de carbono que esté basado en fuentes energéticas renovables.

Dentro de este contexto mundial, Chile ha establecido por Ley la carbono neutralidad y para ello ha decidido construir una transición energética que además de asegurar el suministro, da prioridad a mitigar el cambio climático aprovechando las excelentes condiciones para el funcionamiento de energías renovables, fomentando su incorporación, impulsando la descarbonización, estableciendo criterios de uso eficiente de la energía, dentro de un mercado energético estable con un marco regulatorio sólido que ha logrado trascender a los gobiernos convirtiéndose en políticas de Estado, con énfasis en que esta transición sea justa y sustentable con consenso social y sobre la importancia de llevar todos los esfuerzos para una pronta transición energética.

Es así como a diciembre 2023, resultados concretos de la transformación energética que Chile ha decido realizar, se observan en que el 64% de la capacidad instalada neta ⁸ del SEN corresponde a fuentes renovables (21% hidráulica; 25% solar; 14% eólico; mini hidro 2%; 2% biomasa; concentración solar de potencia 0,33% y 0,25% geotérmica) mientras que el 36% corresponde a fuentes térmicas (13% carbón, 11% gas natural y 12% petróleo).

Asimismo la generación⁹ renovable en el SEN en los últimos años ha aumentado fuertemente, llegando en 2023 a un 63% de generación (37% de ERNC y un 26% de generación hidráulica convencional) siendo el mayor aumento, el de las tecnologías solar fotovoltaicas y eólica, que han aumentado drásticamente. Es así como en el 2023 por primera vez la participación anual de generación eléctrica con ERNC casi iguala el nivel de participación de la generación térmica (37,3%). Asimismo durante el 2023 se instalaron 102 nuevos proyectos ERNC y sistemas de almacenamiento, totalizando 1.827 MW, y a diciembre de 2023 habían 374 proyectos en construcción entre ERNC, sistemas de almacenamiento y ERNC con sistemas de almacenamiento, por un total de 6.806 MW.

Ahora bien, no obstante los importantes avances que ha tenido Chile en la materia, hoy ante el abrupto ingreso de las energías renovables no convencionales y el comparativamente lento crecimiento en líneas de transmisión, actualmente se evidencian importantes desafíos

⁸ Capacidad instalada: potencia de generar energía en base a determinada tecnología

⁹ Generación de energía: energía eléctrica efectivamente generada a partir de determinada tecnología

para lograr la total transición y una carbono neutralidad al 2050. Entre los principales desafíos están:

- ✓ Falta de flexibilidad del Sistema eléctrico nacional
- ✓ Mejorar fallas detectadas de infraestructura u otras, además de tratar de solucionar congestión en sistema de transmisión, que hacen que no pueda ingresar energía renovable generada hoy.
- ✓ Construir nuevas líneas transmisión, los costos que se han ido incrementando en los últimos años de, transmisión y de cargos sistémicos como servicios complementarios, mínimos técnicos, reserva hídrica, impuesto verde entre otros¹º.
- ✓ Disminuir el amplio desfase entre la construcción de nuevas obras y redes de transmisión en relación al abrupto desarrollo y petición de ingreso de generadoras de energías renovables no convencionales.
- ✓ Aumentar capacidad de almacenamiento ante intermitencia actual de las energías renovables no convencionales (ERNC).
- ✓ Mejorar la planificación territorial y que esta sea proactiva.
- ✓ Mejorar tiempos de tramitación de permisos para desarrollar proyectos de energía, transmisión y almacenamiento.

Por tanto, Chile sigue trabajando fuertemente para lograr la meta de tener una matriz energética descarbonizada, sustentable y que además sea eficiente.

Es así como en julio de 2023, el Ministerio de Energía ingresó el Proyecto de Ley de Transición Energética que busca posicionar a la transmisión eléctrica como un sector habilitante para la carbono neutralidad. Su objetivo es acelerar la participación de las energías renovables en la matriz eléctrica nacional a través de modificaciones al mecanismo de asignación de ingresos tarifarios, mejoras al sistema de transmisión eléctrica, desarrollo de la infraestructura habilitante y el fomento para el desarrollo de proyectos de almacenamiento energético.

Una solución a estos temas podría ser la generación eléctrica renovable más cerca de los centros de consumo, de manera de reducir los costos de transmisión, así como avanzar hacia un sistema eléctrico más flexible, que pueda incorporar más energía renovable de todo tipo (ACENOR, 2022).

7.2. En la minería del cobre chilena

Se podría decir que la minería del cobre tiene un doble rol dentro de la transición energética. Por un lado como activador del uso de energías limpias en el país y por otro proveyendo una materia prima que es componente importante en el funcionamiento de tecnologías limpias como la fotovoltaica, eólica, electromovilidad por mencionar algunas. Por tanto el suministro de cobre se vuelve clave y estratégico para lograr una transición energética en Chile y el mundo.

 $^{^{10}} https://acenor.cl/empresas-en-insolvencia-levantan-alarmas-en-industria-de-energias-renovables-y-expertos-analizancausas/$

Es así como, se concibe a la producción de cobre refinado como parte importante de la solución frente al desafío global del cambio climático, donde la transición energética mundial será un gran movilizador de la demanda de cobre y que se espera que el consumo del metal, que es intensivo como componente en la construcción de redes eléctricas, en la generación de energías renovables, en electromovilidad y otros se expanda en alrededor de 9 millones de toneladas al 2035¹¹ (Figura 13), siendo las mayores demandas por concepto de construcción de redes eléctricas que requerirá 8 millones de toneladas de cobre y la industria de los autos eléctricos que requerirán 2,6 millones en el 2035.

Asimismo se visualiza a la industria minera del cobre, al ser un importante cliente energético (34% del consumo eléctrico nacional entre el 2023), como actor clave en:

- a) Fomentar la incorporación de energías renovables sin emisiones en la matriz energética que ha ayudado a impulsar el uso de energías renovables en el país al integrar estas en su suministro eléctrico;
- b) que también ha mostrado acciones concretas de estar comprometido con la reducción de emisiones de gases de efecto invernadero (GEI);
- c) y que ha ido incorporando además la eficiencia energética;

Estos componentes, tanto la reducción de emisiones como la eficiencia energética, son claves en lograr una transición energética.

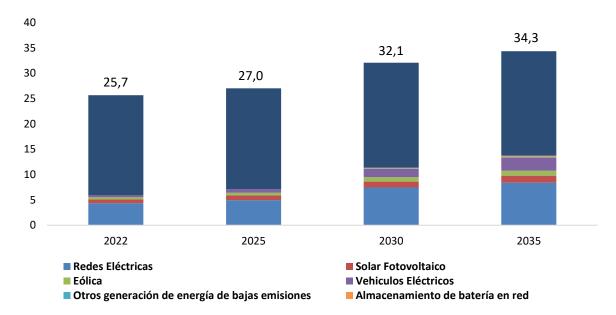


Figura 13: Principales Fuentes de Demanda de Cobre 2022- 2035

Fuente: International Energy Agency, 2024

¹¹ COCHILCO en base a información de la Internacional Energy Agency, mayo 2023

7.2.1. Integración de energías renovables en la minería del cobre

La minería del cobre, ha realizado esfuerzos por usar energías renovables, integrando estas energías a las operaciones mineras de distinta forma:

- a) Uso Directo de energías renovables en algún proceso, mediante un proyecto de energías renovables desarrollado por la propia minera para su abastecimiento;
- b) A través de contratos PPA (Power Purchase Agreements) en los que la minera ha participado en la inversión del proyecto de energías renovables;
- c) A través de contratos PPA en los que la minera como cliente solicita a su generador que el suministro sea con energías renovables;

Esta última forma de integración ha sido la principal opción elegida por las operaciones mineras chilenas con poderosos procesos de renegociación de sus contratos eléctricos, con el objetivo de iniciar contratos con energías renovables y con precios más convenientes. Otras compañías mineras si bien han optado por vender sus acciones en proyectos de energías renovables para concentrarse en el negocio minero, se siguen abasteciendo a través de contratos PPAs de estos proyectos de energías renovables.

La Tabla 7 a continuación contiene información pública disponible tanto en internet como de reportes de sustentabilidad de las empresas mineras que refleja el interés de la minería por implementar energías limpias en sus operaciones.

Tabla 7: Resumen de casos de uso de energías renovables en la minería chilena

Minas integrando energías renovables	Proyecto de energías renovables	Tipo de Integración	Descripción
Centinela(Ex-El	Planta Termo Solar	Directo	1.280 colectores cilindricos, para calendar
Tesoro), AMSA			soluciones EW, reduciendo 10.000 t CO ₂ . Primera en construirse en Chile
Los Bronces, Anglo	Planta Fotovoltaica sobre	Directo	150 MWh/año, 256 paneles photovoltaicos
American	relaves, Las Tórtolas		localizados in una isla flotante sobre depósito de
			relaves que también reducen la evaporación del agua sobre el area que cubre.
Pucobre	Planta Fotovoltaica sobre	Directo	El parque solar, que se encuentra emplazado en un
	tranque de relaves cerrado		terreno de 4,5 ha en Tierra Amarilla, contó con una
	construido por Guacolda		inversión de US\$ 3 millones y tiene una capacidad
	Eléctrica		de 3 MW, energía que será usada para la planta de
			flotación San José de Pucobre.
Gabriela Mistral,	Planta Termo Solar Pampa	PPA de calor	Equivalente a 54 GWh/añor; 44.000 Ha
Codelco	Elvira	térmico, HPA	calentamiento soluciones, reduciendo 15000 t
			CO ₂ ,
Los Pelambres,	Planta Fotovoltaica Javiera	PPA	69,5 MW; 180 ha; 15% de necesidades energéticas
AMSA			de los Pelambres
Los Pelambres,	Planta Fotovoltaica Conejo	PPA	104MW; 260 Ha ~20% necesidades energéticas de
AMSA	Solar		los Pelambres
Los Pelambres,	Parque Eólico, El Arrayán	PPA	122 MW; 280 GWh/año , 70% a los Pelambres,
AMSA			~20% necesidades energéticas de los Pelambres
Zaldívar, AMSA	Energías Renovables	PPA	Contrato proveerá 550 GWh/año: 100% de energía
	Colbún S.A	10 años	limpia renovable reduciendo 350000 t CO2

Minas integrando energías renovables	Proyecto de energías renovables	Tipo de Integración	Descripción
Centinela, AMSA	Energías Renovables Engie Energy	PPA	Contrato proveerá 186 MW a partir de 2022
	Energías Renovables Colbún	PPA 15 años	Contrato proveerá 912 GWh/año a partir de 2025
Antucoya, AMSA	Energías Renovables Engie Energy	PPA 11 años	Contrato proveerá 300 GWh/año, 100% de energía limpia renovable reduciendo 134.000 t CO ₂
	Planta Photovoltaica Pozo Almonte 1,2,3	PPA 20 años	Contrato que provee desde el 2014 25MW ~13% de necesidades energéticas de Collahuasi reduciendo 50000 t CO2
	Energías Renovables Enel	PPA 10 años	Contrato proveerá a partir del 2020, 1000 GWh/año 100% de energías renovables, al ~80% de necesidades energéticas de Collahuasi
Collahuasi	Energías Renovable no Convencional Sonnedix	PPA	Contrato frmado en julio 2020 que proveerá a 150 GWh de Energía Renovable no Convencional equivalentes al 12% de consume energético de la compañía
	Energías Renovables Colbún	PPA 12 años	Contrato proveerá 650 GWh/año: 100% de energía limpia renovable a partir de enero 2024. Entre 2024 y 2025 proveerá 230GWh y entre 2026 y 2035 650 Gwh
Quebrada Blanca Teck	Planta Photovoltaica Andes Solar AES Gener	PPA 20 años	Contrato que provee desde el 2013 21 MW, ~ 30 % de necesidades energéticas de Quebrada Blanca
Quebrada Blanca 2 Teck	Energías Renovables AES Gener	PPA 17 años	Contrato firmado en 2020, 1.069 GWh/año que cubrirá 100 % de necesidades energéticas de Quebrada Blanca 2 con energías renovables a partir del 2025
Carmen de Andacollo Teck	Energías Renovables AES GENER	PPA 11 años	Contrato que proveerá entre 2020 al 2031 72 MW lo que cubrirá el 100% de las necesidades de electricidad de la operación con energías renovables.
Candelaria	Energías Renovables AES Gener	PPA 18 años	Contrato proveerá a partir del 2023 1.100 GWh/año con energías renovables
BHP Escondida - Spence	Energías Renovables ENEL y Colbún	PPA 10 años ENEL 15 años Colbún	Contrato proveerá 6 TWh anuales, a partir de 2021 y segunda parte en 2022
Anglo American (Los Bronces, El Soldado, Chagres)	Energías Renovables ENEL	PPA 10 años	Contrato que provee a partir del 2021 3TWh anuales
ENAMI	ACCIONA Energías Renovables y Plantas Fotovoltaicas Conejo Solar y Almeyda	PPA	Contrato que proveerá entre 2018 al 2022 el 100% de las necesidades de electricidad de plantas Enami y el complejo Paipote_Matta con energías renovables.
CAP Group	Planta Photovoltaica Amanecer Solar	PPA	Contrato que provee desde el 2014 100 MW; 250 Ha; ~15% de necesidades energéticas de CAP
División Chuquicamata, Codelco	Energías Renovables ENGIE	PPA 11 años	Contrato de 200 MW (1.500 GWh/año)que proveerá a partir del 2021 comenzando con el 70% de las necesidades de electricidad de operación con energías renovables
Salvador, Andina, Ventanas y Teniente Codelco	Energías Renovables Colbún	PPA 18 años	Contrato firmado en 2022 que suministrará 1.000 GWh/año con energías renovables a partir del 2026.

Minas integrando energías renovables	Proyecto de energías renovables	Tipo de Integración	Descripción
Radomiro Tomic y Ministro Hales	Energías Renovables AES Andes	PPA 14 años	Licitació pública desarrollada en 2023 que adjudicó 375 GWh/año a atlas, 1.100 GWh/año a Colbún y 350 GWh/año a Innergex a partir de enero 2026, lo que sumada a otros contratos suministrará el 85% de electricidad renovable a Codelco
CODELCO	Energías Renovables Atlas,Colbún e Innergex	PPA 15 años	Contrato firmado en 2023 que suministrará 1.6 TWh/año con energías renovables a partir del 2026.
Caserones	Energías Renovables ENEL	PPA 17 años	Contrato que proveerá a partir del 2021 el 100% de las necesidades de electricidad de la operación con energías renovables.
Sierra Gorda	Energías Renovables AES GENER	PPA 18 años	Contrato que proveerá a partir del 2023 el 100% de las necesidades de electricidad de las operaciones con energías renovables.
Manto Verde Extensión	Energías Renovables	PPA	Contrato que suministrará 50% de las necesidades de la operación con energías renovables
Cemin	Energías Renovables Engie	PPA 4 años	Contrato que proveerá 1,48 GWh anuales para abastecer las instalaciones de las operaciones de Minera Pullalli, ubicada en La Ligua, región de Valparaíso.
Minera Catemu Cemin	Energías Renovables Enel Generación	PPA	Contrato firmado en 2022 de 33 GWh con 100% energías renovables
Dos Amigos Cemin	Energías Renovables Enel Generación	PPA	Contrato firmado en 2022 de 2 GWh con 100% energías renovables
Lomas Bayas	Energías Renovables Engie	PPA 18 años	Contrato que provee una potencia de 50 MW
El Abra	Energías Renovables Engie	PPA 7 años	Contrato que provee una potencia total de 110 MW, con un contrato base por 80 MW desde 2021 y un adicional de 30 MW hasta 2028
Altonorte	Energías Renovables Engie	PPA	Contrato que provee una potencia de 50 MW
Pampa Camarones	Energías Renovables Engie	PPA 20 años	Contrato que provee 45 GWh/año hasta el 2040
Michilla Haldeman Mining	Energías Renovables Engie	PPA	Extensión contrato con 100% enegía renovable de 50 GWh entre 2025 al 2028.
Cerro Negro	Energías Renovables Latin American Power	PPA	Contrato que provee 40 GWh/año provenientes de parques eólicos San Juan y Totoral
Pucobre	Energías Renovables	PPA	Contrato desde 2021 que provee 100% necessidades empresa con energías renovables.
Carola - Coemin	Energías Renovables Acciona	PPA 8 años	Contrato suscrito en 2021 que provee 100% necessidades empresa con energías renovables hasta el 2029.
Valle Central	Energías Renovables ENEL	PPA 17 años	Contrato suscrito en 2020 que provee 100% necessidades empresa con energías renovables hasta el 2037.

Fuente: Elaboración Cochilco en base a información pública, mayo 2024

Las energías renovables reducen las emisiones de gases efecto invernadero (GEI), por tanto la integración de las energías renovables en minería del cobre le permite reducir sus emisiones GEI en las operaciones mineras y así poder dar cumplimiento a los públicos compromisos que ha realizado el sector como lograr una carbono neutralidad en un futuro cercano.

Es así como en el sector minero del cobre chileno, al igual que en el país y bueno a nivel mundial, es cada vez es más importante la forma en que se genera energía que solo su costo, ello se ve acentuado por el cambio climático y los acuerdos internacionales suscritos para reducir las emisiones de efecto invernadero y para tener un desarrollo sustentable con bajas emisiones de carbono.

Al usar energías renovables la minería logra darle valor agregado al cobre, diferenciarse en el mercado con una producción más sustentable acorde a los requerimientos de sustentabilidad del mercado, así como las exigencias ambientales y sociales que se están requiriendo actual y futuramente y así también tener mayor aceptación por parte de la comunidad y la sociedad. Tiene beneficios reputacionales y coherencia con el discurso de una minería sustentable. También hace al negocio más atractivo para los inversores y las industrias consumidoras que están interesadas en invertir/abastecerse en empresas mineras que tienen una huella de carbono más baja que sus rivales.

Es así como estos incentivos generan un círculo virtuoso entre la minería y el sector energético, por tanto es de prever que la industria minera siga incrementando el uso de las energías renovables a futuro.

Asimismo los contratos actuales de energía (PPA) en la mayoría de las empresas se realizan a largo plazo, con poca flexibilidad para incorporar energías renovables en cualquier momento del contrato, en la mayoría de los casos, las minas deben esperar hasta el final del contrato para incorporar otro tipo de tecnología. Algunas minas importantes han terminado sus PPA pagando multas, con el objetivo de iniciar contratos con energías renovables y con precios más convenientes También es necesario desarrollar capital humano especializado.

7.2.2. Porcentaje de uso de energías renovables en la minería del cobre

Es importante señalar antes de ver los resultados de esta sección sobre porcentaje de uso de energías renovables atribuibles a la minería del cobre, que hoy en día dada la estructura de nuestro sistema eléctrico es bastante complejo identificar o correlacionar una unidad de generación de la matriz energética con el consumidor final (en este caso la minería), por tanto los cálculos expuestos a continuación (obtenidos con información pública) son una gruesa aproximación a la realidad y así deben ser considerados. La estimación realizada no considera por ejemplo las eventuales restricciones en la transmisión, cuando se producen congestiones en la transmisión, el sistema de transmisión se desacopla, entonces ya no se puede decir que —por ejemplo- las mineras que están en el norte, podrían estén consumiendo electrones que genera la hidro en el sur. También otro caso que puede suceder

es que por ejemplo dada las limitaciones actuales de las energías renovables no convencionales (ej. su intermitencia), como por ejemplo en una generación por energía solar, podría ser erróneo asignar el porcentaje de una energía fotovoltaica de la matriz, a una minera que esté operando de noche, aunque también depende del almacenamiento que tenga la planta fotovoltaica, ahora bien como el almacenamiento falta por desarrollarse a nivel mundial, a priori podríamos decir que no se puede asignar 100% esa energía al consumidor nocturno. Según el Ministerio de Energía, el porcentaje de consumo renovable de la minería va a depender mucho de la curva de demanda de la minería respecto de la curva de generación total.

Por tanto, hay diferentes iniciativas para trazar y certificar estos contratos que el proveedor ofrece de energías renovables, una de ellas es la que ha estado implementando el Coordinador Eléctrico Nacional, apoyado por el Ministerio de Energía con el Registro Nacional de Trazabilidad de Energías Renovables (RENOVA), un sistema de trazabilidad para acreditar que los contratos de suministro eléctrico basados en energías renovables que cumplen con esta condición y a la vez reconocer el atributo cero emisión de la electricidad generada de fuentes renovables.

Tomando en cuenta lo anterior, se procede a la estimación de porcentaje de uso de energías renovables en minería del cobre.

Ahora bien, para poder tener una idea del uso de renovables en minería del cobre en los próximos años, se realiza un cálculo estimativo basado en la información pública mostrada en sección anterior de las mineras que han ido integrando las energías renovables a sus operaciones mineras (Tabla 7) y obteniendo así que el 2028 el sector tendrá 25 TWh de suministro eléctrico con energías renovables lo que representaría un 75% de electricidad sin emisiones ese año (Tabla 8).

Tabla 8: Porcentaje de potencial uso de Energía Renovable respecto a la demanda total de electricidad de la minería del cobre

Consumo Electricidad (TWh)	2023	2024	2025	2026	2027	2028
,						
Por uso de Energías renovables	17,3	19,4	21,4	23,7	24,4	25,0
Consumo esperado minería del cobre	26,0	27,7	29,4	30,4	31,8	33,6
Porcentaje de potencial uso de energía renovables	66,6%	69,8%	72,9%	78,1%	76,7%	74,5%

Fuente: Elaboración Cochilco en base a información pública, 2024; Estudio Proyecciones de Energía Minería del Cobre, Cochilco 2023

Estas acciones, junto con algunas otras, como las minas que ya habían invertido para construir su propia fuente de energía renovable, son muestra de esfuerzos concretos para mitigar las emisiones de efecto invernadero y contribuir al desarrollo sostenible del sector y de los compromisos que el país ha adoptado interna e internacionalmente para mitigar el cambio climático.

7.2.3. Progresiva implementación de la eficiencia energética

Como se puede observar en secciones anteriores, las necesidades eléctricas del sector minero del cobre han ido aumentando y se espera aumenten en el tiempo por temas estructurales que enfrenta la minería, ahora bien, cabe señalar se espera que en un futuro que la electricidad requerida por el sector minero del cobre provenga de fuentes renovables.

Al respecto, si bien esta integración de energías renovables en la matriz energética nacional y en el sector minero es muy positivo para un desarrollo sustentable del sector minero, cabe señalar que este suministro creciente con fuentes limpias debe complementarse con un mejoramiento continuo de la eficiencia energética y con una gestión de la energía en una minería sustentable líder en la mitigación al cambio climático.

En febrero de 2021, se publicó en el Diario Oficial la Ley № 21.305 sobre Eficiencia Energética que promueve el uso racional y eficiente de la energía, conjuntamente con institucionalizar la eficiencia energética y promover la activa gestión energética de grandes consumidores entre otras materias. Esta Ley mandata que los grandes consumidores de energía¹² realicen una gestión activa de su energía. También contempla la elaboración de un Plan Nacional de Eficiencia Energética cada 5 años, con metas de reducción de intensidad energética. El 2022 entró en vigencia el Reglamento sobre Gestión Energética de los organismos públicos y de los grandes consumidores de energía denominados consumidores con capacidad de gestión de energía (CCGE).

Las empresas que califiquen como CCGE están obligadas a implementar uno o más sistemas de gestión de energía (SGE) que cubran, al menos, un 80% de su consumo energético total, e incluyan políticas, metas, planes de acción e indicadores de desempeño energético, designar un gestor energético y tener sistemas de medición y verificación. Estos sistemas de gestión serán controlados mediante auditorías que deberán ser contratadas cada tres años por las empresas calificadas como CCGE, las que además deberán enviar anualmente a la autoridad un informe de sus consumos de energía e información sobre las oportunidades y acciones de eficiencia energética realizadas y proyectadas. Por otro lado, la Superintendencia de Electricidad y Combustibles será la encargada de la fiscalización de esta Ley.

¹² Empresas con consumos de energía para uso final sobre 50 tera-calorías (58 GWh) anuales, que se denominan consumidores con capacidad de gestión de energía (CCGE)

En términos de los alcances de la Ley de eficiencia energética en el sector minero ¹³, se tiene en el año 2022 el 92% del sector minero del cobre está afecto a la Ley de eficiencia energética (toda la gran minería, y sólo 4 operaciones de la mediana minería no califican). Por tanto, el sector minero, entre otros principales CCGE del país, está mandatado a realizar una gestión activa del consumo de energía, implementar sistemas de gestión de energía y además deberá reportar sus parámetros energéticos anualmente.

Ahora bien ya en el año 2022 el 72% del sector minero de cobre ya tenía un SGE implementado, adelantándose así a lo exigido por la Ley (el plazo oficial para implementar el SGE es de 12 meses entre 2023 al 2024).

Con esto se busca promover mejoras continuas, optimizar consumos energéticos tanto de combustibles, como de energía eléctrica (independientemente si el suministro sea de fuente renovable o convencional). Un efecto importante de lo anterior es la reducción de emisiones de gases de efecto invernadero.

Con todo, es importante que la industria minera del cobre siga incrementando la eficiencia energética en uso de electricidad y combustibles en aquellas faenas que ya han comenzado en esta senda y desarrollar esta línea de trabajo en las faenas donde no se ha realizado aún. Por ello el compromiso y colaboración entre las propias empresas mineras (en cada una de sus divisiones) con la eficiencia energética es relevante, ya que permitirá la transferencia de mejores prácticas en este ámbito, fortaleciendo el negocio minero.

7.2.3.1. Electromovilidad en minería

Otro punto punto importante impulsado por la Ley de eficiencia energética es la electromovilidad. Asimismo en la última Estrategia Nacional de Electromovilidad del 2021, se plantea a la electromovilidad como una importante oportunidad gracias a sus beneficios, pero que conlleva a desafíos y necesidades en esta adaptación tecnológica y laboral. El desarrollo de la electromovilidad en Chile durante los próximos años y las necesidades en el ámbito de capital humano tomarán un rol importante para avanzar de forma decidida en una transición energética provocada por el reemplazo de los combustibles fósiles, donde el sector transporte representa uno de los mayores consumos de energía.

En la minería del cobre, han ido implementado la incorporación de la electromovilidad, hay diversos ejemplos en transporte liviano, como son el uso de taxis y buses eléctricos para el traslado de trabajadores y de equipos en zonas de operación, probando además rutas que tienen ciertas complejidades como por ejemplo caminos con nieve durante el invierno, enfrentando así vehículos eléctricos a condiciones reales de una operación minera con el fin de validar variables tecnológicas, de negocios y de sustentabilidad. Lo anterior, contribuirá a entender la nueva tecnología e identificar los desafíos para extrapolarla, incorporarla y

¹³ Informe consumo de energía al 2022, Cochilco 2023

escalarla otros procesos. También progresivamente se han ido introduciendo equipos como palas y sistemas de tracción de camiones eléctricos.

Es así como ya al 2022 el 60% de las operaciones de la minería del cobre tiene planes de electromovilidad y/o transporte bajo en emisiones, llegando a un 79% en la gran minería y un 45% en la mediana minería ese año.

En el estudio de septiembre 2022: "Oportunidades de negocio para la transición energética en la minería chilena", realizado en por el Centro Nacional de Pilotaje, la consultora Phibrand y la Universidad técnica Federico santa María, visulaizan muchas de estas alternativas de electromovilidad y otras como al corto y mediano plazo, así que es de esperar un acelerado avance en la materia en la próxima década.

8. Comentarios finales

La minería del cobre ha sido y continúa siendo clave para el crecimiento económico de Chile. Sin embargo, la industria se enfrenta a una serie de desafíos estructurales que impactan en un mayor crecimiento esperado en su consumo de electricidad. En efecto, el crecimiento esperado en producción de cobre —de un 21% entre 2023 y 2034-- es significativamente menor a la proyección de consumo eléctrico, que crecería un 31% durante el periodo considerado. Esta mayor alza esperada en el consumo en relación a la producción responde a factores estructurales de la matriz productiva de la industria., dentro de los cuales destacan:

- El alto crecimiento esperado en la producción de concentrados en desmedro de cátodos electro-obtenidos (42% de crecimiento versus 45% de decrecimiento respectivamente en el periodo 2023-2034), situación que se atribuye al progresivo decaimiento de las reservas de minerales oxidables del país. Una producción enfocada en concentrados supone una mayor intensidad en el uso de plantas concentradoras, proceso que es altamente intensivo en energía eléctrica. En efecto, el uso de energía eléctrica a partir de este proceso aumentará de 14 TWh en 2023 a 20 TWh en 2034, representando un crecimiento de 44% entre los años considerados.
- El proceso de Concentradora, además de ser intensivo en electricidad, también lo es en otro recurso clave que es particularmente escaso en las zonas norteñas del país: el agua. Como respuesta, las operaciones mineras de Antofagasta y Atacama han recurrido progresivamente al uso de agua marítima, para lo cual se requiere de su impulsión hacia las faenas. Precisamente este proceso de impulsión tiende a ser particularmente intensivo en energía eléctrica, lo que vuelve a implicar un mayor uso de este recurso. De esta manera, vemos que el consumo eléctrico asociado al uso de agua de mar crecería de 3 TWh en 2023 a 7 TWh en 2034, prácticamente se duplicará.
- El envejecimiento de las minas y la continua caída en las leyes minerales supone un mayor mineral a procesar con mayor dureza y consecuentemente un mayor uso de electricidad en la Concentradora.

A su vez, el sector minero del cobre para seguir desarrollándose y de manera sustentable, necesita que el país cuente con una infraestructura necesaria para satisfacer la demanda esperada de manera segura, a precios competitivos y con fuentes de suministro limpias, necesidad que aumenta con las crecientes demandas energéticas de la minería del cobre nacional en la próxima década.

Chile por su parte ha liderado una revolución energética en los últimos años, que ha hecho posible avanzar en mejoras significativas para un escenario energético más eficiente y sustentable. Ha establecido por Ley la carbono neutralidad, por tanto se ha puesto como meta además de asegurar el suministro energético, da prioridad a mitigar el cambio climático aprovechando el gran potencial del país para el funcionamiento de energías renovables, fomentando su incorporación, impulsando la descarbonización, estableciendo criterios de uso eficiente de la energía, dentro de un mercado energético estable con un marco regulatorio sólido que ha logrado trascender a los gobiernos convirtiéndose en políticas de Estado, con énfasis en que esta transición sea justa y sustentable con consenso social y sobre la importancia de llevar todos los esfuerzos para una pronta transición energética.

En este contexto energético, la minería chilena ya ha realizado y está progresando significativamente en el uso de Energías Renovables. Un importante número de empresas mineras han ido realizando procesos de renegociación de contratos eléctricos, finalizando sus PPA con el objetivo de iniciar contratos con energías renovables y con precios más convenientes. En 2023 el 67% del consumo eléctrico minero es de fuentes limpias y en 2026 se espera un 78% de la demanda eléctrica de la industria provendrá de este tipo de energías. Lo anterior cobra una importancia especialmente alta considerando que se espera que el sector sea responsable de un promedio del 36% del consumo eléctrico nacional anual entre 2023 y 2034.

Otras iniciativas que prosperan en términos de un suministro energético sustentable en minería, es la introducción de la electromovilidad, y ya hoy hay diversos ejemplos en transporte liviano o en otros equipos como palas y sistemas de tracción de camiones eléctricos están avanzando aceleradamente y se visualizan ya al corto y mediano plazo.

Ahora si bien la integración de energías renovables es muy positivo para un desarrollo sustentable del sector minero, este suministro creciente con fuentes limpias debe complementarse con un mejoramiento continuo de la eficiencia energética. Hoy el país cuenta con la Ley de Eficiencia Energética, que mandata a los principales consumidores de energía en el país, entre los cuales está el sector minero, a realizar una gestión activa del consumo de energía, implementar sistemas de gestión de energía y reportar sus parámetros energéticos anualmente para su debida fiscalización, con esto se busca promover mejoras continuas y reducción de emisiones. En la materia, la gran y mediana minería del cobre ha firmado convenios de colaboración con las autoridades energéticas orientado a impulsar un uso cada vez más eficiente de la energía en las empresas mineras Otro importante avance importante en eficiencia energética en minería ha sido la creación de una Red de Eficiencia Energética y Reducción de Emisiones, que tiene el objetivo común de mejorar gestión

energética o implementar medidas de eficiencia energética, valiéndose para lograrlo del intercambio de experiencias, problemáticas y recursos mutuos.

Es así como, es importante que la industria minera del cobre siga incrementando la eficiencia energética en aquellas faenas que ya han comenzado en esta senda y desarrollar esta línea de trabajo en las faenas donde no se ha realizado aún. Por ello que el compromiso y colaboración entre las propias empresas mineras (en cada una de sus divisiones) con la eficiencia energética es relevante, ya que permitirá la transferencia de mejores prácticas en este ámbito.

Con todo, si bien las necesidades eléctricas del sector minero del cobre se espera aumenten en el tiempo, se espera también en un futuro cercano está energía provenga de fuentes renovables.

Dado la transición energética en el país, si esta persiste al igual que continúan los esfuerzos de las mineras por lograr la carbono neutralidad; que las energías renovables superen el desafío de su intermitencia, para dar paso a un suministro constante, lo cual puede ser compensando a través de sistemas de almacenamiento; y además si el mundo logra dar suministro continuo y sustentable de los materiales necesarios para una transición energética; existe una buena probabilidad de lograrse los objetivos propuestos de tener suministro eléctrico 100% renovable en minería del cobre de acá al 2040. Esta situación mejorará la posición competitiva de la industria cuprífera nacional, permitiendo compensar parcialmente el incremento esperado en intensidad de consumo de energía eléctrica.

9. Anexos

9.1. Anexos capítulo 2: Metodología

9.1.1. Detalle de la metodología de cálculo del consumo esperado de electricidad en plantas desaladoras y Sistemas de impulsión

Por la naturaleza de la desalación de agua de mar y su impulsión, sus consumos tienen su propio tratamiento. La metodología implica una estimación de la potencia eléctrica requerida para la planta y para el Sistema de impulsión. Luego, para el cálculo de la energía se asume una tasa promedio de horas diarias donde se aplica la potencia.

- a) Los supuestos usados en este ítem son los siguientes:
 - Plantas en operación se mantienen según la vida útil de la faena a la que abastecen.
 - El caudal de agua desalinizada/impulsada es según la proyección que hace COCHILCO sobre el consumo de agua esperado de cada faena. La capacidad de la planta es lo que es en base a lo informado por las empresas.
 - Se considera el mismo caudal para la planta desaladora y para su Sistema de impulsión en los casos que se utilice agua desalada.
 - Todos los proyectos en estudio o pre-factibilidad comienzan a operar Inician su actividad en función del inicio en producción del proyecto minero asociado.
 - Para el Sistema de impulsión se estimó el consumo energético en base a cota y distancia de la costa dimensionando la cantidad de bombas requeridas.
 - Para la planta desaladora se estimó el consumo eléctrico según un factor por m3 de agua a desalinizar.
 - Funcionamiento plantas generadoras de 360 días al año y 24 horas al día.
 - Energía por m3 necesaria para desalinizar: 3.27Wh/m3.
 - Eficiencia bombas de 70%.
 - Perdidas de carga horizontal: 0.031Kwh/(m³/km)
 - Consumo energía eléctrica por diferencia de cota: 0.004 Kwh/(m³/m)

b) Cálculo de la potencia:

Se calcula la potencia requerida por las plantas desaladoras y luego la potencia necesaria para la impulsión del agua utilizando las siguientes fórmulas:

Tabla 9: Cálculo de la potencia requerida en la desalación e impulsión de agua

Proceso	Potencia (MW)
Desalación de agua	$4\frac{KWh}{m^3} \times Q \times \frac{3.6}{1.000}$
Impulsión de agua	$\frac{g \times \rho \times Q \times H}{1.000.000 \times \eta_b \times \eta_m}$

Fuente: COCHILCO

Donde:

g: Aceleración de gravedad, la cual es igual a 9,8 (m/s²).

- ρ: Densidad del agua, la cual es igual a 1000 (kg/ m³).
- H: Altura (msnm).
- Q: Caudal en metros cúbicos por segundo (m³/s).
- η_b : Rendimiento de bombas (%).
- Π_m : Rendimiento del motor (%).
- c) Cálculo de la energía eléctrica a consumir, según la siguiente fórmula:

$$Energía (TWh) = \frac{Potencia \times días \times horas}{1.000.000}$$

Donde:

- Potencia: está expresada en MW.
- días: Se consideraron 360 días de operación en el año
- horas: Se consideraron 24 horas de funcionamiento diarias.
- d) Generación de escenarios:

Posteriormente se generan escenarios anuales para cada una de las plantas desadoras y Sistemas de impulsión, aplicándoles los mismos ponderadores de los proyectos mineros y además un factor de 100%, 90% y 80% para los escenarios máximo, más probable y mínimo respectivamente, para agregarle variabilidad a la cantidad de días y horas de funcionamiento de las plantas y Sistemas de impulsión.

Con los escenarios generados se aplica el método de Montecarlo explicado en la metodología, obteniendo una distribución probabilística del consumo de energía anual para cada una de las plantas desaladoras y Sistemas impulsión. Posteriormente se procedió a calcular el valor esperado de cada una de las distribuciones probabilísticas, tal como se efectuó para la proyección de consumo de electricidad por parte de los procesos mineros. El valor esperado del consumo eléctrico por este concepto es sumable al valor esperado del consumo minero propiamente tal.

9.2. Anexo con cifras de proyección de consumo esperado de electricidad 2023–2034 en diferentes categorías

9.2.1. Proyección de consumo de electricidad según procesos

Tabla 10: Consumo esperado de electricidad (TWh) en la minería del cobre por proceso, 2023-2034

Proceso	23	24	25	26	27	28	29	30	31	32	33	34
Concentradora	13,99	14,98	16,20	16,90	18,15	19,05	19,76	19,89	19,53	19,37	19,90	20,15
Mina Rajo	0,95	1,01	1,06	1,10	1,13	1,17	1,21	1,19	1,14	1,11	1,11	1,13
Mina Subte.	0,48	0,48	0,57	0,59	0,64	0,71	0,71	0,81	0,80	0,79	0,81	0,78
Fundición	1,62	1,52	1,42	1,42	1,58	1,61	1,60	1,60	1,61	1,62	1,65	1,67
Refinería	0,24	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21	0,21
Lixiviación	4,93	5,03	5,12	5,15	4,64	4,79	4,81	4,64	3,85	3,30	2,82	2,73
Servicios	0,87	0,92	0,98	1,02	1,05	1,10	1,13	1,13	1,09	1,05	1,06	1,07
Agua de Mar	2,98	3,59	3,78	4,01	4,40	4,98	5,48	5,77	5,82	5,81	6,24	6,50
Total	26,05	27,75	29,35	30,40	31,80	33,62	34,91	35,24	34,04	33,26	33,80	34,22

Fuente: COCHILCO

9.2.2. Proyección de consumo de electricidad según condición

Tabla 11: Consumo eléctrico esperado (TWh) en la minería del cobre por condicionalidad, 2023–2034

					202	.5 2054	•					
Condición	23	24	25	26	27	28	29	30	31	32	33	34
Base	26,03	27,63	28,81	29,40	29,81	30,06	29,31	27,93	25,99	24,74	23,70	23,25
Probable	0,02	0,03	0,43	0,76	1,11	1,99	3,33	4,60	5,30	5,69	6,19	6,15
Posible	0,00	0,09	0,11	0,24	0,34	0,85	1,44	1,71	1,67	1,68	1,99	2,00
Potencial	0,00	0,00	0,00	0,00	0,55	0,71	0,83	1,00	1,08	1,15	1,92	2,82
Total	26,05	27,75	29,35	30,40	31,80	33,62	34,91	35,24	34,04	33,26	33,80	34,22

Fuente: COCHILCO

9.2.3. Proyección de consumo de electricidad por tipo de proyecto

Tabla 12: Consumo eléctrico esperado (TWh) en la minería del cobre por tipo de proyecto, 2023–2034

					202	.5 2057	г					
Tipo	23	24	25	26	27	28	29	30	31	32	33	34
Nuevo	0,96	2,05	2,41	2,52	3,12	4,22	5,73	6,29	6,55	6,66	7,85	8,66
Expansión	0,24	0,41	1,15	1,34	1,67	1,65	1,68	1,93	2,00	2,04	2,12	2,13
Reposición	0,08	0,16	0,31	0,52	0,62	1,42	1,96	3,06	3,62	3,96	4,40	4,32
Operando	24,77	25,13	25,49	26,02	26,39	26,32	25,54	23,96	21,87	20,60	19,42	19,11
Total	26,05	27,75	29,35	30,40	31,80	33,62	34,91	35,24	34,04	33,26	33,80	34,22

Fuente: COCHILCO

9.2.4. Proyección de consumo de electricidad por regiones

Tabla 13: Proyección consumo eléctrico esperado (TWh) de la minería del cobre por región, 2023–2034

					2023-	2034						
Región	23	24	25	26	27	28	29	30	31	32	33	34
Arica y Parinacota	0,02	0,02	0,02	0,02	0,02	0,01	0,00	0,00	0,00	0,00	0,00	0,00
Tarapacá	2,96	3,94	4,38	4,61	4,85	5,06	4,97	4,75	4,63	4,58	4,65	4,54
Antofagasta	15,1	15,69	16,48	16,67	16,55	17,64	18,40	18,83	18,12	17,58	17,90	18,10
Atacama	2,41	2,45	2,87	3,02	3,19	3,22	3,85	3,98	3,76	3,83	3,85	4,42
Coquimbo	1,42	1,82	2,01	2,07	2,20	2,42	2,60	2,71	2,65	2,43	2,44	2,44
Metropolitana	0,87	0,61	0,46	0,88	1,32	1,33	1,24	1,56	1,65	1,56	1,52	1,46
Valparaíso	1,2	1,09	1,17	1,22	1,69	1,76	1,67	1,39	1,28	1,29	1,36	1,26
O'Higgins	2,1	2,13	1,97	1,91	1,97	2,17	2,19	2,01	1,94	1,99	2,07	2,01
Total País	26,05	27,75	29,35	30,40	31,80	33,62	34,91	35,24	34,04	33,26	33,80	34,22

Fuente: COCHILCO

Este trabajo fue elaborado en la Dirección de Estudios y Políticas Públicas por

Rossana Brantes Abarca

Analista de Estrategias y Políticas Públicas

Patricia Gamboa

Directora de Estudios y Políticas Públicas

Junio / 2024

Se autoriza la reproducción total o parcial de este Informe, siempre que la fuente "Comisión Chilena del Cobre" y/o "Cochilco" sea citada, salvo que se indique lo contrario.

Copyright by Cochilco, todos los derechos reservados